SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Regular & Supplementary Examinations October-2020 POWER SYSTEM ANALYSIS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

1 For the network shown below. Draw the Oriented graph from that Find A¹, A, B and C 12M matrices.

OR

2 What is a primitive network and represent its forms? Prove $Y_{BUS} = A^T [y] A$ using singular 12M transformation.

	transformation.	
	UNIT-II	
3	a Define positive, negative and zero sequence components in 3 phase systems.	6M
	b Explain about sequential components in unloaded generators.	6M
	OR	
4	Discuss the principal of symmetrical components. Derive the necessary equations to convert:	12M
	i) Phase quantities into symmetrical components.	
	ii) Symmetrical components into phase quantities.	
5	a Derive and explain about static load flow equations	6M
•	 berive and explain about state road now equations. b Explain the data for load flow studies. 	6M
	OP	0101
6	Give the algorithm for load flow solution for Gauss Saidel method with PO buses presents	1 2 M
U	The me algorithm for foad now solution for Gauss- Selder method with FQ buses presents.	12111
_		
7	Derive power flow equation and draw power angle diagram for a 2- machine system with	12M
	Negligible losses.	
~	OR	~ -
8	a Explain the equal area criterion applied to a Generator connected to infinite bus through a	6M
	line, when fault cleared after some time.	
	b Explain the equal area criterion applied to a Generator connected to infinite bus through a	6M
	line, when fault load changing.	
	UNIT-V	
9	Derive the expression for Swing equation.	12M
	OR	
10	Define and explain about Steady state stability limit, Transient state stability limit and	12M
	Dynamic State stability limit.	
	*** FND ***	

Page 1 of 1

R16